

Bestimmung der Sedimentakkumulation auf Hallig Langeness im Winter 2009/10

Marieke Vogt, Matthias Deicke & Volker Karius

Universität Göttingen, Geowissenschaftliches Zentrum, Deutschland

Abstract

The so called "Halligen" are small inhabited marsh islands within the North Frisian wadden sea, Germany. Their surface elevation is only slightly above the mean high water of the North Sea but they are not protected by dykes. The Halligen serve as wave beakers for the main coast line. For centuries they have been flooded during storm surges. These floodings left behind sediments that increased the surface elevation of the Halligen at a so far unknown rate. The recent sea level rise may endanger the balance between surface elevation and mean high water, thus it is important to quantify the sedimentation rate on the Halligen.

Sedimentation was measured on Hallig Langeness in winter 2009/10. In October 2009, 60 sediment traps were installed and collected in March 2010 after two floodings. A median sediment accumulation of 1473 to 1559 g/m^2 depending on the type of sediment trap used and a surface increase of 0.98 to 1.04 mm was measured.

1 Einleitung

Die Landoberfläche der Halligen vor der Küste Nordfrieslands erhebt sich nur wenig über das mittlere Tidehochwasser (MThw). Die Halligen sind nicht durch Deiche geschützt und liegen gleichzeitig in einem Gebiet, in dem der Meeresspiegel steigt. Seit Jahrhunderten werden die Halligen bei Sturmflut überspült, lediglich die Warften, die künstlichen Erdhügel, auf denen die Häuser errichtet sind, bleiben trocken. So eine Überflutung wird als "Land unter" bezeichnet. Ein Anstieg des MThw könnte zu häufigerer Überflutung der Halligen in der Zukunft führen. Andererseits wird während der "Land unter" Sediment antransportiert. Diese natürliche Sedimentation ließ die Halligen mit der Zeit in die Höhe wachsen. Im Rahmen des SAHLL Projektes wird untersucht, ob die natürliche Sedimentation ausreicht, um ein Mitwachsen der Halligoberfläche mit dem ansteigenden Meeresspiel zu gewährleisten. Dazu wurden im Winterhalbjahr 2009/2010 im Rahmen einer neun wöchigen Bachelor-Arbeit sechzig Sedimentfallen auf Hallig Langeness ausgelegt und die entsprechende Sedimentakkumulation gemessen (Vogt 2010).

2 Ziele

- ➤ Bestimmung der Sedimentakkumulation auf Hallig Langeness und das daraus resultierende Aufwachsen der Halligoberfläche im Winter 2009/10.
- Bestimmung des langfristig erhaltungsfähigen Sedimentanteils (siliziklastischer Anteil)
- > Bestimmung des organischen Anteils am Gesamtsediment

3 Untersuchungsgebiet und Methoden

Untersuchungsgebiet

Hallig Langeness erstreckt sich WSW-ENE über ca. 11 km. Das Relief ist flach, die Halligoberfläche

liegt im Mittel etwa 1,70 m ü NN, wobei das Südufer etwas niedriger liegt als das Nordufer. Außerdem erheben sich die ufernahen Bereiche etwas höher als das Zentrum der Hallig. Ein Netz aus Prielen entwässert die Hallig über Sieltore. Das Ufer ist rundum durch einen teilweise wasserdurchlässigen Halligrauhstreifen, den sog, "Igel" befestigt, dieser erhebt sich rund 1,80 m über die Halligoberfläche.

Es wurden drei Flächen beprobt (Abb. 1). Diese lagen alle in Ufernähe und unterschieden sich in einigen Merkmalen, die untersucht werden sollten.

Die "WWF-Fläche", 600x600 m² groß, im Süden der Hallig wird vom WWF als Versuchsfläche genutzt. Sie wird in verschiedenen Bereichen unterschiedlich stark beweidet, hieraus ergeben sich unterschiedliche Vegetationshöhen zwischen wenigen Zentimetern bis zu einem Meter.

Die "Fläche am Treuberg" grenzt ebenfalls an das Südufer an, südlich der Warft Treuberg. Sie ist 200x300 m² groß. Mehrere größere Priele entwässern die Fläche durch ein Sieltor direkt am angrenzenden Ufer.

An der Westspitze der Hallig befindet sich die "Fläche am Leuchtturm". Sie liegt exponiert, da die Hauptwindrichtung SW bis NW ist und deshalb das Wasser bei Sturmflut aus diesen Richtungen auf die Hallig dringt. Die Fläche wird von mehreren mittleren und kleinen Prielen durchzogen, die nach Westen entwässern. Parallel zum "Igel" verläuft der alte Deich. Die Fläche zwischen "Igel" und Deich bildet ein Becken, das höher liegt als das Land innerhalb der Deichlinie. Es wird über Rohre direkt ins Watt entwässert.

Die "Fläche am Leuchtturm" liegt im Vergleich zur übrigen Hallig auffällig niedrig, nur ca. 1,40 m ü. NN.

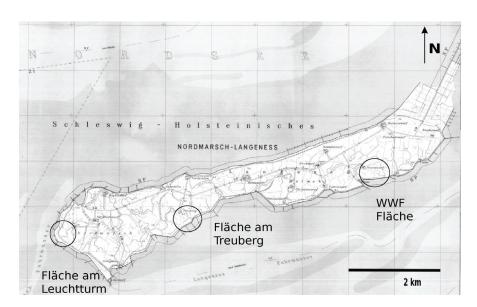


Abb. 1: Hallig Langeness, Ausschnitt aus TK 25, Blatt 1317, Wyk (Föhr). Die drei Untersuchungsgebiete sind eingekreist.

Probennahme

Im Zeitraum zwischen dem 01.11. und 03.11.2009 wurden 60 Sedimentfallenkombinationen ausgelegt und zwischen dem 27.03. und 29.03.2010 wieder eingesammelt. Die Sedimentfallenkombinationen bestanden jeweils aus einer 1 l PE-Flasche, die mit einem Stechzylinder im Boden eingelassen wurde, wobei der Flaschenhals ca. 3 cm über die Geländeoberkante hinausragte, und einer 20x30 cm PE-Fußmatte, die auf dem Erdboden ausgelegt und mit 5 Nägeln verankert wurde. Um die Fußmatte von auf der Unterseite anhaftendem Bodenmaterial frei zu halten, wurden die Matten auf eine ebenso große Folie gelegt.

Probenaufbereitung im Labor

Das gefangene Sediment enthielt zwei Hauptbestandteile: Die siliziklastische Komponente sowie organische Substanz. Organische Substanz trägt auf lange Sicht nicht zum Höhenwachstum der Hallig bei, deshalb musste dieser Anteil quantitativ ermittelt und von der Gesamtprobe abgezogen werden. Bei Matten- und Flaschensediment wurde unterschiedlich vorgegangen.

Vorgehensweise bei den Matten

Die Matten wurden mehrere Tage im Trockenschrank bei 60 °C getrocknet und mit einer Messgenauigkeit von 0,01 g gewogen. Zur Bestimmung des Glühverlustes wurde eine repräsentative Menge Festsubstanz von der Matte abgeklopft. Abschließend wurden die gereinigten Matten erneut gewogen. Die Sedimentmenge wurde durch Differenzbildung berechnet.

Vorgehensweise bei den Flaschen

Die Brackwassersuspension aus den Flaschen wurde dekantiert, eingedampft, getrocknet und gewogen, um die Trockenmasse der Probe zu ermitteln. Hierbei ergibt sich die Schwierigkeit, dass die verbleibende Trockensubstanz große Mengen an Salz aus dem Brackwasser enthält. Um diesen Salzanteil zu ermitteln wurde vor dem Eindampfen die Suspension gewogen. Aus der Massendifferenz vor und nach dem Eindampfen wurde das eingedampfte Wasservolumen berechnet.

Der Salzgehalt dieses Wasservolumens wurde für alle Proben über eine Leitfähigkeitsmessung errechnet Vor dem Eindampfen der Suspension wurde die elektrische Leitfähigkeit (Lf) des Wassers gemessen. Die Lf-Daten wurden mit fünf verdünnten künstlichen Meerwasserstandards kalibriert und in Salzkonzentrationen umgerechnet. Details dieser Methode beschreiben Karius & Machunze (2010).

Bestimmung des siliziklastischen Anteils

Zur Bestimmung des siliziklastischen Anteils mußten organischer Anteil und Salzanteil vom Gesamtfestoff abgezogen werden. Sander et al. (2010) konnten zeigen, dass der organische Anteil gut durch den Glühverlust bei 535°C, korrigiert um einen Kristallwasseranteil angegeben werden kann. Kohlenstoffbestimmungen (C/S-Analysator Eltra, CS 800) ergaben, dass der Karbonatanteil (Total Inorganic Carbon) im Sediment vernachlässigbar gering war (<3 %).

Der Anteil der organischen Substanz wurde durch zweistündiges Glühen der Probe im Muffelofen bei 535 °C bestimmt. Dabei wurde angenommen, dass die gesamte organische Substanz beim Glühen verschwindet. Der Fehler, der hierbei durch Kristallwasser der salzigen Proben entstand, wurde mit Hilfe von Kohlenstoffbestimmungen (Total Organic Carbon) an salzhaltigen und salzfreien Proben korrigiert. Details dieser Methode beschreiben Sander et al. (2010).

Die organische Substanz wurde mit dem korrigierten Glühverlust gleichgesetzt.

Der siliziklastische Anteil wurde aus der Differenz von Gesamtfeststoffmasse, Masse des enthaltenen Salzes und der organischen Substanz berechnet.

Berechnung der Sedimentakkumulation und des Sedimentaufwachses

Die Sedimentakkumulation und der Sedimentaufwuchs wurden nach Formeln (1) und (2) berechnet.

$$W = (m/A) * \rho^{-1} * 10$$
 (1)

$$S = m*10000/A$$
 (2)

- W Oberflächenzuwachs [mm]
- S Sedimentakkumulation [g/m²]
- m Masse siliziklastischer Feststoff [g]
- A Akkumulationsfläche [cm2]
- ρ Trockenraumdichte des Sedimentes [1,5 g*cm-3] (nach Deicke et al. 2009)

Die Berechnung wurde für die Flaschen mit der Querschnittsfläche des Flaschenhalses $A = 19,63 \text{ cm}^2$ bzw. für die Matten mit $A = 600 \text{ cm}^2$ durchgeführt.

4 Ergebnisse

Es fanden in der Sturmflutsaison 2009/10 zwei "Land unter" statt, die zu einer vollständigen Überflutung von Hallig Langeness führten. Diese datieren auf den 18.11.2009 bei einem Pegel von max. 1,80 m über MThw und Sturm aus SSW bis W sowie auf den 23.-24.11.2009 bei einem Pegel von max. 1,22 m über MThw und Sturm aus SW (mündliche Mitteilung H.F. Nissen am 06.07.2010) In Tab. 1-3 werden die Ergebnisse der drei Untersuchungsflächen dargestellt. In Tab. 4 sind die Mittel- und Medianwerte der einzelnen Flächen und der Gesamtheit aller Proben dargestellt.

Tab. 1: Ergebnisse der Sedimentfallenuntersuchung auf Hallig Langeness im Winter 2009/10 - WWF-Fläche.

		Akkumulation	Aufwuchs	siliziklastisch	er Anteil	organischer	r Anteil
Probe	Тур	g/m²	Mm	g	%	g	%
LA01	Flasche	2703	1,80	5,31	99,0	0,06	1,0
	Matte	314	0,21	18,84	89,1	2,30	10,9
LA02	Flasche	2711	1,81	5,32	100,0	0,00	0,0
LA02	Matte	551	0,37	33,09	94,1	2,07	5,9
LA03	Flasche	6	0,00	0,01	10,4	0,10	89,6
LAUS	Matte	536	0,36	32,16	84,5	5,92	15,5
LA04	Flasche	1720	1,15	3,38	91,5	0,31	8,5
LA04	Matte	474	0,32	28,42	90,6	2,94	9,4
LA05	Flasche	1063	0,71	2,09	86,6	0,32	13,4
LAUS	Matte	211	0,14	12,68	82,8	2,63	17,2
LA06	Flasche	1966	1,31	3,86	84,3	0,72	15,7
LAU0	Matte	230	0,15	13,83	65,8	7,20	34,2
1 4 0 7	Flasche	851	0,57	1,67	86,1	0,27	13,9
LA07	Matte	124	0,08	7,43	78,0	2,10	22,0
1 4 00	Flasche	1029	0,69	2,02	81,8	0,45	18,2
LA08	Matte	912	0,61	54,75	80,4	13,32	19,6
LA09	Flasche	87	0,06	0,17	51,2	0,16	48,8
LAU9	Matte	548	0,37	32,86	83,2	6,65	16,8
LA10	Flasche	10019	6,68	19,67	92,7	1,54	7,3
LAIU	Matte	145	0,10	8,67	76,1	2,72	23,9
LA11	Flasche	3919	2,61	7,69	96,5	0,28	3,5
LAII	Matte	565	0,38	33,91	95,9	1,45	4,1
LA12	Flasche	4181	2,79	8,21	100,0	0,00	0,0
LA12	Matte	422	0,28	25,29	96,5	0,91	3,5
LA13	Flasche	2268	1,51	4,45	92,9	0,34	7,1
LAIS	Matte	245	0,16	14,70	90,8	1,49	9,2
LA14	Flasche	3076	2,05	6,04	83,8	1,16	16,2
LA14	Matte	427	0,28	25,60	94,4	1,52	5,6
LA15	Flasche	n,a	n,a	n,a	n,a	n,a	n,a
LAIS	Matte	171	0,11	10,25	74,0	3,60	26,0
LA16	Flasche	1561	1,04	3,07	77,5	0,89	22,5
LAIO	Matte	194	0,13	11,65	76,0	3,68	24,0
I A 17	Flasche	2404	1,60	4,72	77,7	1,36	22,3
LA17	Matte	149	0,10	8,97	79,4	2,32	20,6

Fortsetzung der Tab. auf der folgenden Seite.

Fortsetzung:

		Akkumulation	Aufwuchs	siliziklastischer Anteil		organischer Anteil	
Probe	Тур	g/m²	Mm	g	%	g	%
LA18	Flasche	1758	1,17	3,45	96,8	0,11	3,2
LAIO	Matte	194	0,13	11,66	89,4	1,38	10,6
LA19	Flasche	n,a	n,a	n,a	n,a	n,a	n,a
LAIT	Matte	314	0,21	18,87	78,2	5,25	21,8
LA20	Flasche	2781	1,85	5,46	77,5	1,59	22,5
	Matte	164	0,11	9,85	79,5	2,53	20,5

Tab. 2: Ergebnisse der Sedimentfallenuntersuchung auf Hallig Langeness im Winter 2009/10 - Fläche am Leuchtturm.

		Akkumulation	Aufwuchs	siliziklastis	cher Anteil	organisch	ner Anteil
Probe	Тур	g/m²	mm	g	%	g	%
LA21	Flasche	1231	0,82	2,42	88,9	0,30	11,1
LAZI	Matte	127	0,08	7,60	84,9	1,35	15,1
LA22	Flasche	1420	0,95	2,79	91,9	0,25	8,1
LAZZ	Matte	116	0,08	6,97	89,9	0,78	10,1
LA23	Flasche	753	0,50	1,48	93,0	0,11	7,0
LAZS	Matte	122	0,08	7,35	88,3	0,97	11,7
LA24	Flasche	892	0,59	1,75	92,8	0,14	7,2
LA24	Matte	197	0,13	11,84	84,9	2,10	15,1
LA25	Flasche	1207	0,80	2,37	96,2	0,09	3,8
LAZJ	Matte	156	0,10	9,38	89,9	1,05	10,1
LA26	Flasche	2021	1,35	3,97	87,8	0,55	12,2
LAZU	Matte	398	0,27	23,85	87,5	3,40	12,5
LA27	Flasche	1386	0,92	2,72	93,1	0,20	6,9
LA2/	Matte	397	0,26	23,83	87,9	3,27	12,1
LA28	Flasche	1881	1,25	3,69	81,6	0,83	18,4
LAZO	Matte	110	0,07	6,63	81,4	1,51	18,6
LA29	Flasche	712	0,47	1,40	92,7	0,11	7,3
LAZI	Matte	215	0,14	12,90	91,1	1,27	8,9
LA30	Flasche	993	0,66	1,95	92,4	0,16	7,6
LASU	Matte	170	0,11	10,19	71,4	4,09	28,6
LA31	Flasche	3687	2,46	7,24	98,6	0,11	1,4
LASI	Matte	470	0,31	28,18	97,5	0,72	2,5
LA32	Flasche	1243	0,83	2,44	89,3	0,29	10,7
LASZ	Matte	189	0,13	11,34	92,5	0,92	7,5
LA33	Flasche	19422	12,95	38,14	100,0	0,00	0,0
LASS	Matte	1008	0,67	60,45	100,0	0,00	0,0
LA34	Flasche	2093	1,40	4,11	91,6	0,38	8,4
LAJ4	Matte	207	0,14	12,43	68,0	5,86	32,0
LA35	Flasche	4325	2,88	8,49	94,3	0,51	5,7
LASS	Matte	842	0,56	50,55	98,1	0,96	1,9
Fortsetzung der Tab, auf der folgenden Seite							

Fortsetzung der Tab. auf der folgenden Seite.

Fortsetzung:

S		Akkumulation	Aufwuchs	siliziklastischer Anteil		organischer Anteil	
Probe	Тур	g/m²	mm	g	%	g	%
LA36	Flasche	3749	2,50	7,36	93,5	0,51	6,5
LASO	Matte	437	0,29	26,20	95,0	1,38	5,0
LA37	Flasche	4124	2,75	8,10	100,0	0,00	0,0
LAST	Matte	506	0,34	30,34	100,0	0,00	0,0
LA38	Flasche	2354	1,57	4,62	93,6	0,31	6,4
LASO	Matte	559	0,37	33,54	96,7	1,15	3,3
LA39	Flasche	2525	1,68	4,96	98,4	0,08	1,6
LASS	Matte	349	0,23	20,94	92,9	1,59	7,1
LA40	Flasche	26460	17,64	51,95	100,0	0,00	0,0
LA40	Matte	796	0,53	47,74	100,0	0,00	0,0
LA41	Flasche	1442	0,96	2,83	91,6	0,26	8,4
LA41	Matte	306	0,20	18,37	93,5	1,28	6,5
LA42	Flasche	1352	0,90	2,66	95,0	0,14	5,0
LA42	Matte	267	0,18	15,99	92,1	1,37	7,9
LA43	Flasche	n,a	n,a	n,a	n,a	n,a	n,a
LA43	Matte	347	0,23	20,84	86,5	3,25	13,5
LA44	Flasche	1262	0,84	2,48	95,9	0,11	4,1
LA44	Matte	168	0,11	10,10	92,4	0,83	7,6
LA45	Flasche	1299	0,87	2,55	90,0	0,28	10,0
LA43	Matte	455	0,30	27,27	92,6	2,19	7,4
LA46	Flasche	2057	1,37	4,04	92,6	0,32	7,4
LA40	Matte	286	0,19	17,15	92,4	1,41	7,6
LA47	Flasche	1425	0,95	2,80	88,2	0,37	11,8
LA4/	Matte	187	0,12	11,23	86,9	1,69	13,1
LA48	Flasche	852	0,57	1,67	88,2	0,22	11,8
LA40	Matte	114	0,08	6,84	90,4	0,73	9,6
LA49	Flasche	1688	1,13	3,31	91,2	0,32	8,8
LA49	Matte	128	0,09	7,67	92,2	0,65	7,8
LA50	Flasche	1557	1,04	3,06	93,8	0,20	6,2
LASU	Matte	139	0,09	8,37	89,6	0,97	10,4

Tab. 3: Ergebnisse der Sedimentfallenuntersuchung auf Hallig Langeness im Winter 2009/10 - Fläche am Treuberg.

		Akkumulation	Aufwuchs	siliziklastischer Anteil		organischer Anteil	
Probe	Тур	g/m²	mm	g	%	g	%
T A 5 1	Flasche	1178	0,79	2,31	84,3	0,43	15,7
LA51	Matte	171	0,11	10,24	92,3	0,86	7,7
1 452	Flasche	2427	1,62	4,77	95,9	0,21	4,1
LA52	Matte	970	0,65	58,23	95,9	2,48	4,1
T A 52	Flasche	3405	2,27	6,68	95,1	0,34	4,9
LA53	Matte	443	0,30	26,58	95,7	1,19	4,3
LA54	Flasche	1506	1,00	2,96	86,7	0,45	13,3
	Matte	238	0,16	14,29	96,0	0,59	4,0

Fortsetzung der Tab. auf der folgenden Seite.

Fortsetzung:

		Akkumulation	Aufwuchs	siliziklastischer Anteil		organischer Anteil	
Probe	Тур	g/m²	mm	g	%	g	%
1 455	Flasche	756	0,50	1,48	90,3	0,16	9,7
LA55	Matte	207	0,14	12,42	86,5	1,94	13,5
1 456	Flasche	646	0,43	1,27	90,5	0,13	9,5
LA56	Matte	78	0,05	4,69	85,5	0,80	14,5
1 4 5 7	Flasche	913	0,61	1,79	90,0	0,20	10,0
LA57	Matte	163	0,11	9,77	84,7	1,77	15,3
1 4 5 0	Flasche	393	0,26	0,77	89,7	0,09	10,3
LA58	Matte	68	0,05	4,11	85,7	0,68	14,3
1.450	Flasche	n,a	n,a	n,a	n,a	n,a	n,a
LA59	Matte	140	0,09	8,38	88,8	1,06	11,2
1.460	Flasche	805	0,54	1,58	94,3	0,10	5,7
LA60	Matte	75	0,05	4,52	87,4	0,65	12,6

Tab. 4: Ergebnisse der Sedimentfallenuntersuchung auf Hallig Langeness im Winter 2009/10 Mittel- und Medianwerte der einzelnen Probeflächen und der Gesamtheit aller Proben.

			Akkumulation	Aufwuchs	siliziklas Ant		organ An	ischer teil
Fläche	Тур	Тур	g/m²	mm	g	%	g	%
	Mittelwert	Flasche	2450	1,63	4,81	82,6	0,54	17,4
WWF-	Mitterwert	Matte	345	0,23	20,67	83,9	3,60	16,1
Fläche	Median	Flasche	2117	1,41	4,16	86,4	0,32	13,6
	Median	Matte	279	0,19	16,77	83,0	2,58	17,0
	Mittelwert	Flasche	3290	2,19	6,46	93,0	0,25	7,0
Leucht-	Millerwert	Matte	326	0,22	19,54	90,2	1,56	9,8
turm	Median	Flasche	1442	0,96	2,83	92,8	0,22	7,2
		Matte	241	0,16	14,45	91,6	1,27	8,4
	Mittelwert	Flasche	1337	0,89	2,62	90,8	0,23	9,2
Treuberg		Matte	255	0,17	15,32	89,8	1,20	10,2
Treuberg	Madian	Flasche	913	0,61	1,79	90,3	0,20	9,7
	Median	Matte	167	0,11	10,01	88,1	0,96	11,9
	Mittelwert	Flasche	2706	1,80	5,31	89,3	0,34	10,7
Gesamt	witterwert	Matte	320	0,21	19,21	88,1	2,18	11,9
Gesamit	Median	Flasche	1559	1,04	3,06	92,2	0,25	7,8
	Median	Matte	223	0,15	13,36	89,5	1,47	10,5

5 Diskussion

Nach den Annahmen, die der Berechnung zugrunde gelegt wurden, ist Langeness im Winter 2009/10 im Median zwischen 0,15 mm (Matte) und 1,8 mm (Flasche) in die Höhe gewachsen (Tab. 4).

Der deutliche Unterschied in den Daten der Matten und der Flaschen ist auffällig. Während Sediment, welches einmal in die Flaschen gelangt ist, kaum mehr remobilisert werden kann, sind die Sedimentablagerungen auf den Matten extrem erosionsanfällig. Regenfälle waschen offenbar große Mengen des Sedimentes von der Matte herunter. Diese Annahme wird durch die Beobachtung gestützt, dass sich Sediment auf den Matten besonders in den Körbchen ablagert, die von den Borsten der Fußmatte gebildet werden. Legt man zur Berechnung der Sedimentakkumulation und des Aufwuchses nur die

Fläche der Matte zugrunde, die von den Körbchen gebildet werden (90,71 cm²), so ergeben sich deutlich höhere Werte (Tab. 5), die im Median sehr gut mit den Flaschendaten übereinstimmen.

Tab. 5: Mittel- und Medianwerte über alle Proben der Hallig Langeness im Winter 2009/10. Für die Berechnung der Mattendaten wurde die Körbchenfläche von 90,71 cm² zu Grunde gelegt.

			Akkumulation	Aufwuchs
Fläche	Тур	Тур	g/m²	mm
	M:44 - 1	Flasche	2450	1,63
WWE Flactor	Mittelwert	Matte	2279	1,52
WWF-Fläche	Madian	Flasche	2117	1,41
	Median	Matte	1849	1,23
	M:44 - 1	Flasche	3290	2,19
I1-44	Mittelwert	Matte	2154	1,44
Leuchtturm	Median	Flasche	1442	0,96
		Matte	1593	1,06
	Mittelwert	Flasche	1337	0,89
Tuendana		Matte	1689	1,13
Treuberg	3.6.12	Flasche	913	0,61
	Median	Matte	1103	0,74
	Mittalmont	Flasche	2706	1,80
Casamt	Mittelwert	Matte	2118	1,41
Gesamt	Madian	Flasche	1559	1,04
	Median	Matte	1473	0,98

Auffällig ist auch der deutliche Unterschied zwischen Mittel- und Medianwerten, die durch wenige Sedimentfallen (LA10, LA33 und LA40) mit extremen Sedimentmengen verursacht werden. Die Medianwerte sind daher wesentlich besser geeignet, um die Sedimentakkumulation der Hallig insgesamt zu beschreiben.

Geht man von zwei "Land untern" aus, errechnet sich aus der Sedimentmenge, die mit den Flaschen gefangen wurde, ein Höhenwachstum von 0,52 mm pro Überflutung. Dieser Wert stimmt sehr gut mit dem im selben Zeitraum auf Hallig Hooge bestimmten Wert von 0,48 mm überein (Sander et al. 2010).

Die Anstiegsraten des MThw zwischen 1965 und 2001 betragen auf den Inseln für Wittdün auf Amrum 41,4 und List auf Sylt 41,8, an der Küste betragen sie für Husum 51,2 und Dagebüll 52,9 (cm/100 Jahre) (Jensen & Mudersbach 2007). Langeness liegt geographisch zwischen diesen vier Punkten. Das Halligwachstum durch Sedimentakkumulation bleibt im hier betrachteten Zeitraum also deutlich hinter dem mittleren MThw-Anstieg zurück.

Literatur

Deicke, M., V. Karius & H. von Eynatten (2009): Bestimmung der Sedimentaufwachsraten auf den Halligen Hooge, Langeness, Nordstrandischmoor und Süderoog (SAHALL). Endbericht (unveröffentlicht).

Jensen, J. & C. Mudersbach (2007): Zeitliche Änderungen in den Wasserstandszeitreihen an den Deutschen Küsten. In: Glaser, R., W. Schenk, J. Vogt, R. Wießner, H. Zepp & U. Wardenga (Hrsg.): Berichte zur Deutschen Landeskunde 81 (2): 99-112.

Karius, V. & C. Machunze (2010): Bestimmung des Feststoffanteils in Brackwassersuspensionen. In: Coastline Reports (diese Ausgabe).

Sander, A., M. Deicke & V. Karius (2010): Bestimmung der Sedimentakkumulation auf Hallig Hooge im Winter 2009/10. In: Coastline Reports (diese Ausgabe).

Vogt, M. (2010): Bestimmung der Sedimentakkumulation auf Hallig Langeness im Winter 2009/10. BSc-Arbeit, Universität Göttingen, GZG-Sedimentologie/Umweltgeologie (unveröffentlicht).

Danksagung

Über die zahlreichen Beteiligten des SAHALL-Projektes der Abteilung Sedimentologie/Umweltgeologie hinaus, gilt der Dank im Besonderen dem Landesbetrieb für Küstenschutz, Nationalpark und Meeresschutz Schleswig Holstein und dem LKN Husum für weitreichende fachliche Unterstützung sowie dem Ministerium für Landwirtschaft, Umwelt und ländliche Räume (Kiel) für die Finanzierung.

Adresse

Dr. Volker Karius Universität Göttingen GZG-Sedimentologie/Umweltgeologie Goldschmidtstr.3 37077 Göttingen, Germany

vkarius@uni-goettingen.de